Revealing galaxies beyond our sight
The secrets of the universe can be revealed in many
different ways. Serendipity often plays a role, where astronomers use unexpected
events to make discoveries. Here's a striking example. In a few cases,
astronomers have been able to map the positions and distances of galaxies that
are so remote and faint they cannot be seen
using our most powerful telescopes. However, the spectacular explosion of a
single star can give away the galaxy's presence.
For context, I’ll explain what the limits of our telescopic vision
are for distant galaxies. A result published
in Nature (arXiv paper) a few
weeks ago by Steven Finkelstein and collaborators claimed the title of the most
distant galaxy with a securely known distance (other possibilities for more
distant galaxies have been claimed, but with less secure distance estimates). The
galaxy is called “z8_GND_5296”, which is a candidate for the most unappealing
galaxy name. The light seen from z8_GND_5296 was emitted when the universe was
only about 700 million years old, or about 5% of its current age. The galaxy
was also found to be forming stars at a prodigious rate.
A Hubble Space Telescope image of z8_GND_5296, which is claimed to be the most distant galaxy with a securely known distance. Credit: V. Tilvi, S.L. Finkelstein, C. Papovich, A. Koekemoer, CANDELS, and STScI/NASA |
This is an impressive result, but it doesn't represent the
record for the most distant object with
a securely known distance. That record is likely held by an exploding star that
was seen when the universe was only about 630 million years old, as published
in Nature papers in 2009 by Nial Tanvir et al (arXiv paper) and Ruben Salvaterra et
al (arXiv paper). Here’s a press
release describing the discovery.
The center of this image shows the afterglow of an exploded star which is claimed to be the most distant known object in the universe. The image was obtained from the Gemini-South and the Very Large Telescope. Credit: A. J. Levan. |
The field containing the explosion seen by Tanvir and
Salvaterra is one of six that was observed with HST by Tanvir et al, as
described in a 2012 paper in The Astrophysical Journal (arXiv paper). The explosions were
traced back to times ranging from about 520 million (*) to about 1.2 billion
years after the Big Bang. Only a hint of a galaxy was seen in one of the
targets – the nearest one – and nothing at all in the others. Just empty
backgrounds. The authors assume that the exploded stars are located in galaxies, because lone stars would be very difficult to understand. Conversely, exotic galaxies are not required. The team estimated that ordinary rates of star formation, at most, are
occurring in these unseen galaxies, rates that are about a hundred or more times
lower than in z8_GND_5296.
These results reveal an observational bias. The
galaxy z8_GND_5296 was only detected at its great distance because it's unusually
bright. To use a human analogy, a galaxy like this is over seven feet tall and
isn’t representative of the larger population. The indirect detection of
galaxies by observing exploded stars also involves limitations: there is an observational
bias because the galaxies have to contain regions with young stars, and these
destructive events are extremely rare, so huge numbers of galaxies are missed.
However, for locating the most typical galaxies in the very distant universe, the
exploded star technique still does a better job than direct detection. Tanvir
et al. make this point with the title of their paper: “Star formation in the early universe:
beyond the tip of the iceberg”.
There are two conclusions I’ll take from these
results. One is that results with superlatives are exciting, but they can have
limited significance. Another is that non-detections are sometimes interesting,
and deserve attention.
Update (Nov 24th): A few days ago a different stellar explosion was discussed in a NASA press conference and press release. This object, named GRB 130427A, was discovered earlier this year using NASA's Swift Space Telescope and the Fermi Gamma-ray Space Telescope. It was not nearly as distant as the GRBs discussed above, since it occurred at a time when the Universe was a much more mature age of 9.9 billion years, that is about 70% of its current age. However, it has other exceptional properties. The NASA press release, written by Francis Reddy, states that it is one of the brightest GRBs ever seen. Also, a new paper (arXiv paper) led by Alessandro Maselli (one of four papers published in Science) explains that its properties are similar to those of the most luminous GRBs seen in the very distant Universe. In the words of Maselli et al. a "common central engine is responsible for producing GRBs in both the contemporary and the early Universe". The common central engine, in academically understated jargon, is a newly formed black hole (see the illustration below).
(*) Technically this object is more distant but the technique used was not a secure one.
In this artist's illustration, the most common type of GRB is shown. The collapse of a massive star forms a black hole (left) and a powerful jet is launched producing radiation across the electromagnetic spectrum. Credit: NASA's Goddard Space Flight Center. |
By coincidence I attended a short talk on GRBs at the Center for Astrophysics on the same day that the Science embargoes went down. The speaker, Tanmoy Laskar, pointed out that there had already been a burst of publicity for GRB 130427A soon after it was discovered, as explained in this slide.
A slide from Tanmoy Laskar's talk. Credit: Tanmoy Laskar |
Note: In a future, more PR-oriented post I'll use some of these results to look at a few challenges involved with publicizing superlatives.
Comments
Post a Comment